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ABSTRACT

A magnetomechanical model for the design and control of Villari-effect magnetostrictive sensors
is presented. The model quantifies the magnetization changes that a magnetostrictive material
undergoes when subjected to a dc excitation field and variable stresses. The magnetic behavior is
characterized by considering the Jiles-Atherton mean field theory for ferromagnetic hysteresis, which
is constructed from a thermodynamic balance between the energy available for magnetic moment
rotation and the energy lost as domain walls attach to and detach from pinning sites. The effect of
stress on magnetization is quantified through a law of approach to the anhysteretic magnetization.
Elastic properties of the sensor are incorporated by means of a wave equation that quantifies the
strains and stresses arising in response to moment rotations. This yields a nonlinear PDE system
for the strains, stresses and magnetization state of a magnetostrictive transducer as it drives or is
driven by external loads. Because the model addresses the magnetoelastic coupling, it is applicable
to both magnetostrictive sensors and actuators. Properties of the model and approximation method
are illustrated by comparison with experimental data collected from a Terfenol-D sensor.
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INTRODUCTION

As sensors become integrated in a growing number of industrial, defense and medical applications,
the demand for improved sensor technologies for detection of various physical parameters is rapidly
increasing [22]. Existing and potential applications for magnetostrictive sensors are numerous be-
cause the newer magnetostrictive materials, fabricated both in crystalline and amorphous form, can
exhibit comparatively large coupling coefficients in the conversion of energy between the magnetic
and elastic states. Recognizing that the magnetostrictive response can be described mathemati-
cally through invertible tensor relations, the conversion between elastic and magnetic energy is: (i)
reciprocal and (ii) of linear or torsional nature depending on whether the magnetic field is longitu-
dinal (xii directions) or circumferential (xij directions) [12, 13, 25, 26]. Linear and torsional sensing
mechanisms are thus possible with magnetostrictive materials. Direct and inverse magnetostrictive
effects applicable to actuator and sensor modes of operation are summarized in Table 1, while
constructive details on such designs can be found in [26].

Although magnetostrictive transducers provide adequate performance at low signal regimes, the
demand for high performance transducers often dictates that they be driven at or near full dis-
placement, where the presence of nonlinearities and path dependences severely compromises the
accuracy of conventional linear formulations. Since the fundamental material properties needed to
design and control dynamic smart material structures vary substantially as various combinations
of major, minor, symmetric and asymmetric magnetization curves are traversed, no nominal design
parameters of the kind defined in linear models can be determined without introducing signifi-
cant simulation or characterization errors. For this fundamental reason, conventional linear models
typically require the construction of laborious experimental look-up tables for properties such as
elastic modulus, damping, and stiffness. But since these properties are magnetoelastic averages de-
pendent on magnetic field, stress, temperature, and frequency, pure experimental methods present
additional challenges concerning the order and time rate in which the different inputs are applied
to the sensor [1, 24]. For magnetostrictive sensors to be competitive with established sensor tech-
nologies, for instance those based on piezoelectricity, maximum performance characteristics of the
kind associated with nonlinear regimes must be sought.

Table 1: Magnetostrictive effects and their inverse.

Direct Effects Inverse Effects

Joule magnetostriction Villari effect

Change in sample dimensions in the direction
of the applied field

Change in magnetization due to applied stress

∆E effect

Magnetoelastic contribution to magnetocrys-
talline anisotropy

Magnetically induced changes in the elasticity

Wiedemann effect Matteuci effect

Torque induced by helical anisotropy Helical anisotropy and emf induced by a
torque

Magnetovolume effect Nagaoka-Honda effect

Volume change due to magnetization (most
evident near the Curie temperature)

Change in the magnetic state due to a change
in the volume
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For operation in actuators and sensors, magnetostrictive materials are customarily operated under
mechanical and magnetic bias conditions. Advantages of biased operation include the ability to
center operation over regions of maximum strain per unit magnetic field input, thus enabling
bidirectional operation, as well as to enhance the magnetoelastic state by inducing magnetic moment
alignment along magnetically easy axis perpendicular to the drive axis [9]. In addition, a mechanical
bias is necessary for reliability reasons to ensure that the magnetostrictive material always operates
in compression.

This paper addresses the modeling of Villari-effect sensors whose active element is a magnetostric-
tive element operated under mechanical and magnetic bias conditions. The proposed model is
sufficiently general to provide characterization of actuation and sensing effects. In actuation mode,
strains and ensuing forces arise as a result of magnetization changes which are brought about by the
application of magnetic fields. Conversely, elastic deformations lead to measurable changes in mag-
netization thus providing a mechanism for sensing. Both modes of operation are inherently coupled
through the magnetomechanical coupling and hence methods for addressing this form of coupling
must be considered in models to be used in high performance transducers. Only by addressing
magnetic hysteresis and magnetoelastic coupling effects in a manner consistent with the physi-
cal properties of magnetostrictive materials will models for intelligent structures based on these
materials be sufficiently accurate to characterize the performance space of existing and expected
applications. It is emphasized that transducer models able to characterize the magnetomechanical
coupling lend themselves to the design of collocated actuators and sensors. Demonstration of the
use of magnetostrictive materials for sensoriactuation applications can be found in [18, 21].

The model is formulated in the context of the transducer design shown in Figure 1, which illus-
trates primary components needed to fully utilize the advantageous properties of magnetostrictive
materials. These components include a magnetostrictive rod, an excitation/sensing solenoid that
provides the bias magnetization and sensing voltage, a prestress mechanism consisting of a bolt
and a spring, a permanent magnet which is used in conjunction with the solenoid to finely adjust
the bias magnetization, and magnetic couplers.

The model is presented in three steps. In the first, we consider the magnetization of a magnetostric-
tive rod under a fixed dc magnetizing field H0 and a variable stress field σ. The magnetization
changes arising from the application of H0 are quantified by considering a mean field model of
ferromagnetic hysteresis as originally proposed in [15]. The stress-induced component of magneti-
zation is modeled by a law of approach to the anhysteretic magnetization as developed in [16] and
extended to magnetostrictive transducers in [6]. The two components considered together provide
a magnetization model based on the energy dissipated when domain walls attach to and detach
from inclusions in a magnetostrictive material.

The second step involves the quantification of the magnetostriction λ produced when the magne-
tostrictive rod is magnetized. The relationship between magnetization and strain is modeled by an
even-terms series expansion dependent on the magnetization produced in response to a magnetic
field as described in the previous step. Although λ includes components of strain arising from the
rotation of magnetic moments, that is those which give rise to magnetostrictions or active strains,
it does not account for passive or material responses of the kind found in ordinary elastic materials
and modeled by sH σ in the generalized Hooke’s law ε = sH σ + d33 H.

The passive effects are modeled in the third step through consideration of force balancing in the
magnetostrictive rod in the form of a PDE that includes the intrinsic magnetostriction, system
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compliance, internal damping, and boundary conditions dictated by the constructive details of the
transducer. The solution to this PDE provides the rod displacements and corresponding total
magnetoelastic strain ε.

Properties of the model and approximation method are illustrated in the final section of the paper
by comparison of model results with experimental data collected from a Terfenol-D sensor.

MAGNETIZATION MODEL

Components of a previous magnetomechanical model [6] are summarized here to characterize the
magnetization of magnetostrictive rods as employed in sensors comprising excitation and sensing
solenoids, a magnetic path, and means for mechanical preloading. Because magnetization and stress
are coupled, magnetization models must be constructed by considering both entities simultaneously.
Unlike the previous model, the present formulation includes the effect of externally applied forces
on the elastic dynamics of the transducer as well as on the magnetic regime. Inclusion of this effect
is critical to the implementation of force sensors, while also allowing the magnetization model to
perform more accurately in cases where a magnetic field sensor is operated under stress created by
a surrounding structure. In light of these considerations, it is assumed that the magnetization M is
due to a dc magnetic field H0 in combination with a magnetomechanical component Hσ associated
with the stress on the magnetostrictive material σ produced as the device drives or is driven by
external loads. In order to provide a general model of the performance of magnetostrictive sensors,
the magnetization is assumed to be a function of magnetic field and stress,

dM

dt
=

(
∂M

∂H

)
dH

dt
+

(
∂M

∂σ

)
dσ

dt
. (1)

The Jiles-Atherton domain wall model [15] is considered here as a basis for characterizing the
changes in magnetization that a magnetostrictive material undergoes when subjected to a uniaxial
field, given by ∂M / ∂H, whereas a law of approach to the anhysteretic magnetization is employed
to quantify the magnetomechanical effect ∂M / ∂σ [16]. The field derivative dH / dt is determined

Displacement Plunger

Prestress Bolt

Magnetostrictive RodMagnetic Coupler

Permanent Magnet Compression SpringSolenoid

Figure 1: Magnetostrictive sensor used for model development and experimental verification.
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by the rate of application of the dc magnetic field H0, while the stress derivative dσ / dt must
be determined from force balancing in a magnetostrictive rod as discussed later. It is noted that
since dH / dt is null during sensor operation, so is dM / dt and the magnetization thus remains
fixed at M0. Hence, the nominal magnetization M0 can be provided by either a solenoid or a
permanent magnet as shown in Figure 1, and its value can be determined theoretically by means
of the Jiles-Atherton model, or experimentally. The former approach is employed here for the sake
of generality. Point (H0, M0) on the magnetization plane represents the zero-load condition of the
sensor.

Constant-Stress Magnetization

To model the differential susceptibility ∂M / ∂H, it is necessary to quantify the energy lost when a
material in the ferromagnetic state is exposed to a cyclic uniaxial magnetic field. Under the action
of a magnetic field, magnetic moments rotate toward the magnetic field direction, giving rise to
the processes of domain wall motion and domain magnetization rotation [17]. Magnetic domains
reorient so as to minimize the total energy, thus producing changes in the bulk magnetization.

In the idealized case of defect-free materials, on reversal of the field the magnetic moments return
to their original orientations and the magnetization returns to its original value. In ferromagnetic
materials, however, defects such as crystal imperfections, cracks and voids provide pinning sites
to which domain walls attach since the total energy decreases as pinning sites are intersected by
domain walls. For low magnetic field intensities about an equilibrium value, the domain walls
remain pinned and bow in a reversible fashion, producing reversible magnetizations. But when
the field intensity is sufficiently high so that the magnetic energy overcomes the pinning energy,
domain walls detach irreversibly from the pinning sites and attach to remote sites. This mechanism
produces energy losses which lead to magnetization hysteresis.

Assuming that no other loss mechanisms are present, the energy supplied to a ferromagnetic ma-
terial is either converted into magnetostatic energy (total magnetization) or dissipated in the form
of irreversible magnetization changes (hysteresis loss due to domain wall pinning). This is formu-
lated through an energy balance in which the total magnetization is calculated from the difference
between the maximum possible magnetization energy, attained in the anhysteretic state, and the
energy lost to pinning. The anhysteretic magnetization is calculated using a modified formulation
of the Langevin equation [15], while the energy lost to pinning is calculated in terms of a pinning
coefficient k that quantifies the density and strength of pinning sites. It is noted that if there is no
dissipation, the magnetization must necessarily follow the minimum energy anhysteretic curve.

We first consider the anhysteretic magnetization Man, which is quantified using the Langevin
formula L(z) ≡ coth(z) − 1/z, −1 < L(z) < 1. As detailed in [15], Man has the form

Man = Ms L(He/a), (2)

in which Ms is the saturation magnetization and the constant a, representing the effective do-
main density, is treated as a parameter to be estimated through a least squares fit to data or
through adaptive parameter identification techniques. The effective magnetic field He is found by
minimization of a suitable thermodynamic potential, and has the form

He = H + α M + Hσ,

where H is the applied magnetic field, α M is the Weiss interaction field responsible for the align-
ment of neighboring magnetic moments within domains, and Hσ ≡ 1/µ0

[
∂

(
3

2
σ ε

)
/∂M

]
is the field
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due to magnetoelastic interactions.

The differential equations for the irreversible Mirr and reversible Mrev components of magnetization
(M = Mrev + Mirr) in the material can be shown to be [15]

Mirr = Man − k δ
dMirr

dHe
(3)

Mrev = c (Man − Mirr), (4)

where the parameter δ is +1 when dH / dt > 0 and -1 when dH / dt < 0 to ensure that pinning
losses always oppose the magnetization and c is a parameter that quantifies the amount by which
domain walls bulge before breaking away from pinning sites.

The total magnetization is then dictated by the superposition of the irreversible and reversible
contributions given by (3) and (4) respectively,

M = Mirr + Mrev = Man − k δ (1 − c)
dMirr

dHe
.

This equation leads to the total differential susceptibility ∂M / ∂H upon differentiation and subse-
quent application of the chain rule. As detailed in [7], the total differential susceptibility has the
form

∂M

∂H
= (1 − c)

Man − Mirr

δ k − α̃(Mirr, σ) (Man − Mirr)
+ c

∂Man

∂H
. (5)

It is noted that in (5), the parameter α̃(Mirr, σ) represents an effective coupling coefficient that
combines the interdomain coupling α and the magnetoelastic interactions,

α̃(Mirr, σ) = α +
3

2 µ0

∂2(σ ε)

∂M2
irr

.

Constant-Field Magnetization

We now consider the changes in magnetization that a magnetostrictive material undergoes when
subjected to a uniaxial stress, or magnetomechanical effect ∂M / ∂σ. Although extensive experi-
mental evidence suggests that the main mechanism governing the magnetomechanical effect is the
unpinning of domain walls produced upon application of stress, at present no single model theory
completely describes the observed behaviors. One description that has proved effective in the anal-
ysis of magnetostrictive transducers has been proposed by Jiles [16]. On the basis of a key model
assumption that hysteresis originates primarily from domain wall pinning, the freeing of domain
walls from their pinning sites is assumed to cause the magnetization to change in such a way as to
approach the anhysteretic magnetization.

Experimental measurements demonstrate that both the magnitude and the direction of stress-
induced magnetization changes are profoundly influenced by the magnetic history of the speci-
men [16, 20, 23]. It has been observed that the direction in which the magnetization changes with
applied stress is independent of the sign of the stress for small stresses and when the magnetiza-
tion is sufficiently distant from the anhysteretic. It is then inferred that the direction of change is
dependent not on the stress itself, but on a quantity which is independent of the sign of the stress.
In this context, it has been hypothesized in [16] that this quantity is the elastic energy per unit
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volume, W = σ2/(2E), which is always independent of the sign of σ. The ‘law of approach’ to the
anhysteretic state is then formulated as follows: the rate of change of magnetization with elastic
energy is proportional to the displacement of the prevailing magnetization from the anhysteretic
magnetization, or ∂M / ∂W ∝ M − Man. The concept of the law of approach is here applied to
the stress-induced magnetization of a magnetostrictive material.

As in the constant-stress magnetization case, the law of approach is modeled through irreversible
and reversible components. It is noted that to a first approximation, the application of stress
produces irreversible magnetization changes since ∆M arising from stress unloading is negligible.
Thus, the law of approach is formulated in terms of the irreversible magnetization Mirr,

∂Mirr

∂W
=

1

ξ
(Man − Mirr), (6)

where ξ is a coefficient, having dimensions of energy per unit volume, that needs to be identified
for magnetostrictive materials. Application of the chain rule ∂Mirr/∂W = (∂Mirr/∂σ) (∂σ/∂W )
in (6), in combination with the relation ∂W / ∂σ = σ/ E, yields

∂Mirr

∂σ
=

σ

E ξ
(Man − Mirr). (7)

A similar argument to that used in the field-induced case yields the reversible component,

∂Mrev

∂σ
= c

(
∂Man

∂σ
−

∂Mirr

∂σ

)
. (8)

It is noted that the reversibility coefficient c is the same as that defined in (4) because the energy
available for domain wall bulging should be independent of the mechanism that produces the
bulging, which can be either field- or stress-induced.

Summing the irreversible and reversible contributions given by (7) and (8) gives

∂M

∂σ
= (1 − c)

σ

E ξ
(Man − Mirr) + c

∂Man

∂σ
, (9)

which is used to quantify the magnetomechanical effect in a magnetostrictive material. Equa-
tion (9) characterizes the law of approach from prevailing magnetization values above or below
the anhysteretic curve. As depicted in Figure 2(a), changes in magnetization will be negative or
positive depending on the position of the starting point M0 relative to the anhysteretic curve. If the
starting point is A, ∆M is negative and the relation between magnetization and stress is as given in
inset (b), top. Conversely, starting point B leads to positive values of ∆M , and the magnetization
traverses a curve like the one given in inset (b), bottom. It is noted that in both cases the field
remains fixed at a value H0. Figure 3 illustrates the shearing of the magnetization with increasing
compressive stress. Consistently with experimental measurements on ferromagnetic materials, the
law of approach described by relation (9) is such that when a magnetostrictive material is subjected
to uniaxial compressive or tensile stress, the magnetization tries to approach the anhysteretic curve
while the location of this curve changes as the stress is applied. Further details on this subject are
given in [6].

It is noted that on application of stress the magnetization approaches a state of global energy
equilibrium. This implies that the anhysteretic magnetization Man must in this case be quantified
by iteration of the Langevin function (2) until a solution which satisfies the equation identically is
found. Further details regarding the differences between local and global solutions for equation (2)
can be found in [6].
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Figure 2: Representation of the approach to the anhysteretic under stress, after [20] (a) Arrows
indicate law of approach from starting positions M0 = A and M0 = B above and below the
anhysteretic curve, for fixed H = H0. In either case, M moves towards point X on the anhysteretic
curve. (b) Trajectory of magnetization change ∆M/Ms upon application and further removal of a
compressive stress, starting at point A (A → X), and at point B (B → X).
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Figure 3: Model results of the effect of stress on the total magnetization (−−−), and on the global
anhysteretic magnetization (− · −), for +10, 0, -10, and -20 MPa. A positive magnetostriction
coefficient is assumed.
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MAGNETOSTRICTION

In order to quantify the contribution of stress to the magnetization given by relation (9), it is
necessary to characterize the strain and stress states in a magnetostrictive rod. To this end, it is
necessary to consider first the deformations that a magnetostrictive material undergoes when its
domain configuration changes. Several models exist for quantifying these deformations, including
phenomenological formulations [16], a quadratic law for domain magnetization rotation [4], energy
or thermodynamic formulations [23-25], elastomagnetic models [26-30], micromagnetic theories [14]
and magnetization rotation analysis [3]. At low to moderate operating levels, or when material
stresses are invariant, these deformations dominate over other material elastic dynamics. In such
cases, it is theoretically possible to quantify the bulk magnetostriction upon knowledge of the
domain configuration and the magnetostriction along easy crystallographic axes. In the case of
Terfenol-D, nominal values for the latter are λ111 = 1600 × 10−6 and λ100 = 90 × 10−6, and
λs ≈ 1000×10−6. In practical terms, however, the domain configuration cannot be known a priori.

To motivate the approach followed here, we consider the particular case when the magnetic field is
applied perpendicular to the axis in which the magnetic moments have been aligned by application
of sufficiently large compression in the case of a polycrystalline material such as Terfenol-D, or
perpendicular to the easy crystallographic axis in a single crystal with uniaxial anisotropy. In
either case domain rotation is the prevailing magnetization mechanism, and the magnetostriction
along the field direction is given by [4]

λ(M) =
3

2
λs

(
M

Ms

)2

, (10)

which predicts a quadratic relationship between λ and M . Relation (10) is single valued, while
extensive experimental evidence suggests that the λ-M relationship exhibits some degree of hys-
teresis. For transducer modeling purposes, it is feasible to utilize a single valued λ-M functional
to model the overall shape, and to let M provide the path dependences through the hysteretic
mechanisms in M -H. This approach has proven effective in previous investigations [7].

It is noted that (10) is not sufficiently general when domain wall motion is significant, such as when
the operating stress acting on the Terfenol-D material is not extreme (σ0 < −6.9 to −20.7 MPa). In
order to provide a more general magnetostriction model, we consider a series expansion symmetric
about M = 0,

λ(M) =

∞∑

i=0

γi M
2i,

in which the coefficients γi need to be identified from experimental data. It is noted that quadratic
relation (10) is obtained by assuming i = 1 with γ0 = 0 and γ1 = (3 λs)/(2 M2

s ). For implementation
purposes, we consider in this study a quartic law in which the series is truncated after i = 2,

λ(M) = γ1 M2 + γ2 M4. (11)

MAGNETOELASTIC COUPLING

The magnetostriction relation (11) represents the strain arising from the reorientation of magnetic
moments toward the direction of applied bias field H0. It was shown in [7] that λ provides a
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generalization of the term d33H in linear models of the form ε = sH σ + d33 H. Equation (11)
ignores, however, the elastic properties of a magnetostrictive material as it vibrates, as represented
in linear models by sHσ. Here, a PDE system is employed to quantify the elastic response of a
magnetostrictive rod and relevant components located in a transducer’s load path. The input to
this system consists of the magnetostriction λ and the external force Fext acting on a sensor. The
solution to the PDE is the longitudinal displacements u(t, x) relative to the prestressed position.

To formulate a model for the structural dynamics of a magnetostrictive sensor, we consider in
Figure 4 a magnetostrictive rod, prestress bolt, prestress washer, and mass load following the
constructive details of Figure 1. It is noted that the arbitrary external force acting on the rod is
denoted Fext(t). The prestress bolt provides a stress σ0 < 0 by compressing the magnetostrictive
rod against the washer, modeled by linear spring kL and dashpot cL. The rod is assumed to have
length L, cross sectional area A, and longitudinal coordinate x. The material density is ρ, the
elastic modulus is E, the internal (Kelvin-Voigt) damping is cD, and the external load is modeled
by a point mass mL. It is emphasized that the value of parameter E lies between that of the elastic
modulus at constant H, EH , and at constant B, EB. Since EH and EB depend upon the field
intensity [5], so does E. However, for simplicity E is treated as a nominal or operational material
stiffness.

Assuming linear elasticity and small displacements, force balancing yields a wave equation for the
rod vibrations,

ρ
∂2u

∂t2
(t, x) =

∂σ

∂x
(t, x).

Here, the stress at cross sections x in the rod is given by [7]

σ(t, x) = E
∂u

∂x
(t, x) + cD

∂2u

∂x∂t
(t, x) − E λ(t, x) + σ0, (12)

where λ is given by (11) and σ0 is the applied prestress. When integrated over a cross section,
relation (12) yields the total inplane resultant N (N > 0 in tension, N < 0 in compression),

N(t, x) = E A
∂u

∂x
(t, x) + cD A

∂2u

∂x∂t
(t, x) − E A λ(t, x) + A σ0.

0

x = 0

kL

cL

u(t,L)

x = L

Lm

R O D

A, E, ρ
extF    (t)

H

Figure 4: Schematic illustration of Villari-effect magnetostrictive sensor subjected to external force
Fext(t).
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To obtain appropriate boundary conditions, it is first noted that at the fixed end of the rod u(t, x) =
0. At the end x = L, force balancing over an infinitesimal cross section of the rod yields

N(t, L) = −mL
∂2u

∂t2
(t, L) − cL

∂u

∂t
(t, L) − kL u(t, L) − Fext(t). (13)

The negative sign implies that Fext > 0 produces a compressive force in the magnetostrictive rod.

For implementation purposes, the model is formulated in weak or variational form by multiplying
the strong form by test functions φ followed by integration throughout the length of the rod.
This reduces the smoothness requirements on the finite element basis since displacements and test
functions need to be differentiated only once compared to the second derivatives present in the
strong form. The space of test functions is V = H1

L(0, L) ≡ {φ ∈ H1(0, L) |φ(0) = 0}, so that for
all φ(x) ∈ V ,

∫ L

0

ρ A
∂2u

∂t2
(t, x) φ(x) dx = −

∫ L

0

[
cD A

∂2u

∂x∂t
(t, x) + E A

∂u

∂x
(t, x) − E A λ(t, x)

]
∂φ

∂x
(x) dx

−

[
mL

∂2u

∂t2
(t, L) + cL

∂u

∂t
(t, L) + kL u(t, L) + Fext(t)

]
φ(L). (14)

The solution u(t, x) to this equation defines the longitudinal displacements about the prestressed
position and completely defines the elastic state through the strain, given by ε(t, x) = ∂u / ∂x(t, x),
and the stress σ(t, x), given by (12). Iterative computation of stress and magnetization based on
relations (9), (12) and (14) yields a fully coupled quantification of the magnetoelastic state of a
magnetic field or force sensor.

MODEL SUMMARY

The magnetoelastic model presented here characterizes the behavior of a magnetostrictive sensor
in response to two excitations: (i) a bias magnetic field H0 applied at a known rate dH / dt and
(ii) a stress σ originated from both the externally applied force and the strain produced by the
material as it is magnetized. It is emphasized that in this formulation the magnetic and elastic
regimes, represented by M and σ respectively, are coupled in accordance with the bidirectional
energy transduction process exhibited by magnetostrictive materials. The model addresses both
the actuation and sensing regimes by means of a unified mechanism. In actuator mode, externally
applied magnetic fields produce magnetization changes which lead to strains and forces produced
by a transducer as it drives external loads. In sensor mode, externally applied forces produce
magnetization changes which can be detected through the emf created in a sensing coil wrapped
around a magnetostrictive rod. The model quantifies the relationship between input and output in
either case.

In the presence of a magnetic field H and a stress distribution σ, the magnetization of a magne-
tostrictive rod is dictated by the superposition of the field- and stress-dependent components given
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by (5) and (9),

dM

dt
(t, x) =

{
(1 − c)

Man(t, x) − Mirr(t, x)

δ k − α̃(Mirr, σ) (Man(t, x) − Mirr(t, x))
+ c

∂Man

∂H
(t, x)

}
dH

dt
(t, x)

+

{
(1 − c)

σ(t, x)

E ξ
(Man(t, x) − Mirr(t, x)) + c

∂Man

∂σ
(t, x)

}
dσ

dt
(t, x). (15)

To characterize dH / dt, it is necessary to quantify first the field H(t, x) generated by a solenoid
when a current I(t) circulates through it. It is often assumed that H(t) = (No. turns /length) I(t).
However, this model is only valid in the idealized case of a lossless, infinitely long solenoid in a
lossless magnetic circuit. A more accurate modeling approach consists of identifying H-I by solving
numerically Ampère’s law or the Biot Savart law using, for example, finite element methods. For
purposes of implementing the proposed model, the H-I relationship is determined experimentally.
The corresponding solenoid model is then written in the form,

H(t, x) = Ns Ψ I(t), (16)

where Ns is the number of turns in the solenoid and parameter Ψ, which needs to be measured from
experimental data, is employed to account for solenoid end effects, demagnetizing factors, ohmic
losses and flux leakage.

Upon substitution of (16) into (15), the final form for the time rate of change of magnetization is
determined,

dM

dt
(t, x) =

{
(1 − c)

Man(t, x) − Mirr(t, x)

δ k − α̃(Mirr, σ) (Man(t, x) − Mirr(t, x))
+ c

∂Man

∂H
(t, x)

}
Ns Ψ

dI

dt
(t)

+

{
(1 − c)

σ(t, x)

E ξ
(Man(t, x) − Mirr(t, x)) + c

∂Man

∂σ
(t, x)

}
dσ

dt
(t, x), (17)

which yields M(t, x) upon integration. It should be noted that in the case of constant stress
(dσ / dt = 0) or constant field (dI / dt = 0), the expression reduces to the individual components
characterized by expressions (5) and (9).

After the magnetization M(t, x) arising from the application of H(t, x) and σ(t, x) has been iden-
tified, active strains are computed from relation (11),

λ[M(t, x)] = γ1 M2(t, x) + γ2 M4(t, x),

where it is noted that since λ depends on the applied magnetic field, it is not homogeneous through-
out the rod. Hence, the magnetostriction varies along x.

The longitudinal rod displacements u(t, x) are computed from (14)

∫ L

0

ρ A
∂2u

∂t2
(t, x)φ(x) dx = −

∫ L

0

[
E A

∂u

∂x
(t, x) + cD A

∂2u

∂x∂t
(t, x) − E A λ(t, x)

]
∂φ

∂x
(x) dx

−

[
Fext(t) + kL u(t, L) + cL

∂u

∂t
(t, L) + mL

∂2u

∂t2
(t, L)

]
φ(L). (18)
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To approximate the solution to this equation, a Galerkin discretization in x is used to obtain a
temporal system which is then solved with finite difference approximations. Details regarding this
solution method are provided in [6]. Once the displacements have been characterized, the strains
are computed directly through the relation

ε(t, x) =
∂u

∂x
(t, x),

and the corresponding stresses acting on the rod are computed directly from the strain using (12),

σ(t, x) = E
∂u

∂x
(t, x) + cD

∂2u

∂x∂t
(t, x) − E λ(t, x) + σ0.

EXAMPLE

Relation (18) is now employed to characterize the magnetization changes produced by a Terfenol-D
sensor with configuration as illustrated in Figure 1 in response to an externally applied force. The
force was generated with a PZT-5A piezoelectric stack and its magnitude was measured with a
PCB 086C03 load cell arranged as indicated in Figure 5. The complete device was rigidly clamped
to the wall at each end.

The measured output from the sensor during operation included the sensing voltage V (t) and
impressed force Fext(t). The prestress level in the magnetostrictive rod was σ0 = −3.45 MPa. A
bias field of magnitude H0 = 75.8 kA/m was applied with an Alnico V permanent magnet which
was slit longitudinally to reduce eddy current losses. Steel end caps and a Belleville compression
washer completed the magnetic circuit.

The magnetostrictive material was a 50 mm long, 6.35 mm diameter monolithic Tb0.3Dy0.7Fe1.92

rod manufactured by the Free Stand Zone Melt process. The sensing signal was provided by a 1100-
turn solenoid wound with AWG26 magnet wire. The magnetic induction Bpu(t) was calculated by
integration of the sensing signal V (t). Following the Faraday-Lenz law of magnetic induction,
Bpu(t) = −1/(Npu Apu)

∫ t

0
V (τ) dτ . Here, Apu is the mean cross sectional area and Npu is the

Signal F(t)

MAGNETOSTRICTIVE SENSOR

MOTION

PIEZOELECTRIC STACK

Sensing Coil
Voltage V(t)

Load Cell

Figure 5: Schematic representation of the assembly used to drive the magnetostrictive sensor.
Measured input was driving force F (t), while measured output was sensing voltage V (t).
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number of turns of the sensing solenoid. Figures 6(a-c) show respectively the 50 Hz applied force,
sensing voltage and magnetic induction data obtained in the case of 550 V volts applied to the PZT
stack.

For simulation purposes, the material was magnetized by applying a quasistatic (1 Hz) sinusoidal
current until a prescribed bias field value H0 was reached. The field value remained unchanged
thereafter to ensure a constant magnetization bias during operation. The magnetic induction was
calculated from the model magnetization M and the applied field H via the magnetic constitutive
relation B = µ0 (M+H), where µ0 is the permeability of free space. It is noted that while the deriva-
tive dB / dt provides a characterization of the sensing voltage through V = −Npu Apu dBpu / dt,
derivatives of quantities involving experimental data typically exhibit significant noise, thus pre-
cluding a proper comparison of measured and calculated sensing voltages. For this reason, a
comparison is established between measured and calculated induction, Bpu and B, respectively.

Basic properties of the model are illustrated in Figure 6(d). The model provides a very accurate
representation of the magnetic induction in the magnetostrictive rod in both the shape and ampli-
tude of the measured response. The minor phase lag of the model with respect to the data may be
explained by eddy current losses in the rod arising due to the 50 Hz frequency of operation. Use of
a laminated sample will surely help to decrease the observed lag.

CONCLUDING REMARKS

A magnetomechanical model for quantifying the behavior of magnetostrictive materials as used in
Villari-effect sensors has been presented. The model addresses the bidirectional energy transduction
between the magnetic and elastic regimes by means of a coupling mechanism posed in terms of a
PDE system. This PDE system treats the case of a magnetostrictive material driving external
loads (actuator mode) or being driven by external loads (sensor mode). Although some model
components are ultimately based on phenomenological observation, crucial aspects of the model
are constructed from thermodynamic principles. For this reason, it is expected that a near-constant
set of parameters will provide accurate characterization of sensor performance over a wide range of
regimes, including highly nonlinear regimes where prior models provide inaccurate results.

The example demonstrated the use of the model to quantify the magnetic induction changes ex-
hibited by a magnetically biased and mechanically preloaded Terfenol-D rod subjected to external
forces. This example provides a template for applications based on magnetostrictive materials in
which the induction changes created in a magnetostrictive rod are used to generate voltages in a
surrounding sensing coil. It was shown that the model accurately characterizes the relationship
between input force and output magnetic induction under typical conditions.
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Figure 6: Experimental data: (a) force applied to sensor, (b) sensing voltage from sensor and (c)
magnetic induction computed from (b). Model performance: (d) comparison of magnetic induction
from model with data shown in (c). The parameters used for model simulation are: a = 7000 A/m,
k = 7000 A/m, c = 0.2, α = 0.065, E = 40 GPa, ρ = 9250 Kg/m3, γ1 = 2.95 × 10−15 m2/A2,
γ2 = −6×10−28 m4/A4, ξ = 8×103 Pa, cD = 1×106 Ns/m, cL = 1×103 Ns/m, kL = 2.66×106 N/m,
mL = 0.1 Kg, σ0 = −3.45 MPa, L = 50 mm, D = 6.35 mm.
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